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Abstract

Numerical simulations of the mass-transfer of droplet in a continuous phase were done for a conjugate problem. The

effect of free and combined convection on the mass transfer was investigated by solving the governing equations using

the finite element method. The results show that the mass transfer depends very strongly on the flow conditions. The

effect of free convection on mass transfer at high Reynolds number is small. The mass transfer by the combined free and

forced convection for a rising drop was found to be smaller than that for a falling drop. The simulation was limited to

Rec6 20.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this work, the effect of free convection on the

unsteady-state mass transfer of liquid drop was investi-

gated. Liquid drops occur in many engineering appli-

cations including the liquid–liquid extraction equipment

where one of the liquid phases is dispersed in the form of

liquid droplets into another phase. The two phases are in

most cases immiscible or partially miscible with each

other. This method of contact results in a large interfa-

cial area per unit volume of mass transfer and thus en-

hances the separation process. The knowledge of the

relevant fluid dynamics and of the mass transfer in a

single drop is, however, the basis for the estimation of

the mass transfer in a system with many liquid droplets

and hence is of paramount importance for the design of

an extraction equipment [1]. A vast number of work

published over the years in this field of study reflects the

importance of the area to many industrial separation

processes. In the previous work, the effect of flow con-

dition (i.e. forced convection) [2,3] and of the Marang-

oni convection (i.e. convection induced by mass transfer)

[4,5] on the mass transfer was investigated. A thorough

understanding of all these mechanisms is needed for the

quantitative prediction of the mass transfer coefficient.

But this still proves difficult till date. That explains the

reason why many empirical and idealized theoretical

equations for predicting the mass transfer coefficient for

drops in the literature do not generally reliably predict

values in close agreement with those found experimen-

tally [1,6].

Extensive theoretical, numerical and experimental

work has been carried out on the continuous phase

mass transfer to and from a liquid drop. The basis of the

theoretical and numerical work is the solution of the

flow and the convection–diffusion equations. Due to

the inherent difficulty in the analytical solution of the

complete flow equations, the theoretical investigation of

the mass transfer has been limited to the creeping [7–9]

and to the potential flow [6,10,11]. Boundary layer the-

ory has also been used to describe the effect of forced

convection on the mass transfer [12,13]. Both the

boundary layer and the potential flow models are valid

for high Reynolds number flow.

The solution of the unsteady-state mass transfer

problem between a dispersed and a continuous phase is

determined by the ratio of the diffusion coefficient
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D� ¼ Dd=Dc. Three cases are to be distinguished from
one another. When the parameter D� � 1, then the rate

of mass transfer is controlled by the transfer resistance

in the dispersed phase (i.e. the internal problem). For

external problem, the transfer resistance is limited to the

continuous phase (i.e. D� � 1). The third case is a

conjugate problem in which the mass-transfer resistance

between the two phases are comparable, i.e. D � 1
[14,15]. The mass-transfer resistance both in the con-

tinuous and the dispersed phases for many system used

in liquid–liquid extraction is mostly of the same order. A

conjugate problem is consequently investigated in this

work.

The analytical solution of the unsteady state con-

vection–diffusion equation is only limited to stagnant

drop and to high Reynolds number flow. Gr€oober [7] was
the first to present an analytical model for the unsteady

mass-transfer process of a conjugate problem for a

stagnant drop. Newton [8] adapted this model for an

internal problem. Kronig and Brink [10] presented a

model for the unsteady state mass-transfer process for a

liquid drop with internal circulation by using the ve-

locity field separately derived by Hadamard [16] and

Rybczynski [17]. The dispersed phase mass-transfer co-

efficient bd of a liquid drop with internal circulation with
mass-transfer resistance in the drop is given according to

the model as:

bd ¼ � dd
6t
ln

3

8

X1
n¼1

B2n exp
�"
� 64knDdt

d2d

�#
: ð1Þ

In this equation, dd denoted the drop diameter, Dd the

diffusion coefficient for the dispersed phase and t the

time. Bn and kn represent the eigenvalues and coefficients

for Eq. (1). The values of these parameters can be ob-

tained from Kronig and Bring [10] and from Elzinga

and Bachero [18]. The long time solution of Eq. (1) is

given as:

bd ¼ 17:7
Dd
dd

: ð2Þ

In the past, many researchers [19–22] have investigated

the effect of free, and combined free and forced con-

vection on the steady-state mass transfer of a liquid

drop. Their results, though at variance with one another,

show that free convection plays a significant role on the

continuous phase mass transfer process. But due to the

relatively small size of a liquid drop and its limited po-

tential to store material, both the mass transfer by free

and combined convection in the dispersed phase should

be investigated in an unsteady-state transfer process.

The main objective of this work is thus to simulate

the unsteady-state mass transfer of a liquid drop.

Boussinesq-approximation is thereby used to account

for the change in density due to concentration changes.

Further investigation included the simulation of the

combined free and forced convection for falling and

rising drops. The effect of combined convection on mass

transfer was clearly shown by comparing the mass

transfer by combined convection with that by forced

convection. The simulation is limited to Rec6 20 be-

Nomenclature

A area of projection of a drop, m2

~BB body force, N

D diffusion coefficient, m2/s

D� ¼ Dd=Dc ratio of diffusion coefficient

dd diameter of the drop, m

F matrix for the boundary conditions

Fo Fourier number

g acceleration due to gravity, m/s2

K equilibrium distribution coefficient

LT continuity matrix

Mp pressure matrix

Nð~uuÞ matrix of the discretized convective term

p pressure, N/m2

r horizontal coordinate

R radius of the drop, m

Re Reynolds number

S stress matrix

Sh Sherwood number

t time, s

~uu vector of unknown velocities ur and uz, m/s

ur horizontal velocity, m/s

uz vertical velocity, m/s

u1 velocity at infinitely far distance from drop,

m/s

wA concentration of solute A

�wwA average concentration of solute A

�ww� dimensionless concentration

z vertical coordinate

Greek symbols

b mass-transfer coefficient, m/s

bK mass expansion coefficient

s ¼ 1=e penalty parameter

g viscosity, kg/ms

q density, kg/m3

w stream function, m3/s

Subscripts

c continuous phase

d dispersed phase

A solute A
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cause the effect of free convection is significant only in

this flow regime.

2. Model equations

2.1. The flow equations

For the purpose of the numerical simulation of the

motion and the mass transfer to and from a liquid drop

in a continuous phase, a suspended liquid drop situated

in a flowing unbounded fluid is considered instead of a

falling or rising droplet. The flow at far away distance to

the drop is uniform and its velocity is u1. The drop has a
constant diameter dd, density qd and viscosity gd. The
continuous phase has different density qc and viscosity
gc. Mass transfer takes place between the dispersed and
the continuous phases as a result of concentration dif-

ference between them. The diffusion coefficient in the

dispersed and continuous phases are represented by Dd

and Dc respectively. Fig. 1 depicts the drop with the

transport properties and the coordinates system. The

flow in and around the drop is assumed to be axisym-

metric and is described by the full incompressible

Navier–Stokes equations [23,24]:

q
o~vv
ot

"
þ ð~vvrÞ~vv

#
¼ �rp þ gD~vvþ~BB ð3Þ

and the continuity equation

oq
ot

þ ðr � q~vvÞ ¼ 0: ð4Þ

~BB, p and~vv in the above equations respectively represent
the body force, pressure and velocity vectors.

A slight change in density as a result of changes in

concentration is allowed, so that free convection plays a

significant role in the mass transfer process. The re-

quirement for the occurrence of such flow is that

the body force and the density gradient should not be

parallel to each other. The change in density due to

concentration changes is approximated using the Bous-

sinesq-approximation [25,26] as

q ¼ q1 � q1bKðw� w1Þ: ð5Þ

In this equation, q1 and w1 represent the density and

the concentration at reference state, w denotes the con-

centration at a point and bK the mass expansion coeffi-
cient. The body force is defined as the product of density

q and the acceleration due to gravity g:

~BB ¼ �q1~gg½1� bKðw� w1Þ� ¼ �q1~gg½1� bKDw�: ð6Þ

The unsteady flow inside and outside a liquid drop is

described by the Navier–Stokes equations in the cylin-

drical coordinates system modified for natural convec-

tion as follows

q
our
ot

�
þ ur

our
or

þ uz
our
oz

�
¼ � op

or
þ g

o2ur
or2

�
þ 1

r
our
or

þ o2ur
oz2

� ur
r2

�
ð7Þ

and

q
ouz
ot

�
þ ur

ouz
or

þ uz
ouz
oz

�

¼ � op
oz

þ g
o2uz
or2

�
þ 1

r
ouz
or

þ o2uz
oz2

�
� q1gbKDw ð8Þ

and the continuity equation in the same coordinates is

oq
ot

þ 1
r
o

or
rurð Þ þ ouz

oz
¼ 0: ð9Þ

The study of the unsteady laminar flow of an incom-

pressible Newtonian fluid past a liquid drop requires the

solution of the above stated equations subject to the

prevailing boundary conditions. These conditions are: (i)

The flow is assumed to be symmetric with respect to the

z-axis. (ii) The interface between the drop and the sur-

rounding fluid is assumed smooth. The size of the drop

is constant and its shape is spherical. That means that

the normal velocities of both fluids at the interface must

be zero and that the tangential velocities are equal. (iii)

The velocity of fluid inside the drop at r ¼ 0 must re-
main finite, ur ¼ 0, uz 6¼ 0. (iv) The tangential stresses at
the interface between the two fluids must be equal. (v)

The inflow velocity at sufficiently far distance from the

drop is given as u1.
Fig. 1. Definition of control volume and the coordinates sys-

tem.
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The field of a flowing fluid is normally presented in a

graphical form through the use of streamline, line of

constant value of stream function w. Between two

streamlines flows a stream of constant volume flow rate.

For cylindrical coordinates system, the velocity com-

ponents are defined as the partial differentials of the

stream function as follows [27]:

ur ¼
ow
2proz

ð10Þ

and

uz ¼ � ow
2pror

: ð11Þ

By integrating Eqs. (10) and (11) the stream function at

a point is obtained as:

w ¼
Z z

0

2prur dz ð12Þ

or

w ¼ �
Z r

0

2pruz dr: ð13Þ

2.2. Convection–diffusion equation

In this work, a dispersed and a continuous phase is

considered to be a binary system consisting of a solvent

and a solute. The initial concentration of the diffusing

solute A in the drop is uniform and is equal to wAd0, and
the initial concentration in the continuous phase is given

as wAc1. Mass transfer thus occurs between the two
phases as a result of concentration gradient. This pro-

cess is governed by the convection–diffusion equation.

The equation in cylindrical coordinates for a system

without chemical reaction is stated below:

owA
ot

þ ur
owA
or

þ uz
owA
oz

¼ D
1

r
o

or
r
owA
or

� ��
þ o2wA

oz2

�
:

ð14Þ

The velocity components ur and uz are obtained from

the solution of the continuity and the Navier–Stokes

equations. Eq. (14) is valid for the description of the

mass-transfer processes both in the dispersed and the

continuous phases. This equation is subject to the initial

and boundary conditions based on the assumptions of

equilibrium at the droplet interface:

KqdDd
owAd
on

				
i

¼ qcDc
owAc
on

				
i

; ð15Þ

wAdp ¼ KwAcp: ð16Þ

The parameter K represents the equilibrium distribution

coefficient. Its value depends on the type of problem.

For an internal problem, K < 1 and for external prob-

lem K > 1. For a conjugate problem, K is of order of

unity. Since this work is concerned with a conjugate

problem, K in Eq. (16) is thus set equal to unity for all

computations.

The following conditions are valid at the symmetry

line:

owAc
or

				
r¼0

¼ 0; owAc
oz

				
r¼0

6¼ 0: ð17Þ

2.3. Mass-transfer coefficient and Sherwood number

The potential for mass transfer between two phases

can be obtained quantitatively through the mean con-

centration �wwA. But the actual transfer rate can be com-
puted from the material balance at the interface. Mass

transfer is normally quantified in practice in dimen-

sionless form as Sherwood number, here defined for the

dispersed phase Shd:

Shd ¼
bddd
Dd

: ð18Þ

The dimensionless mean concentration �ww�
d, the average

Sherwood number and the dimensionless time, the

Fourier number Fod for the dispersed phase, are related
through the following expression [14,28,29]:

�ww�
d ¼ 1� 3

2
ShdFod: ð19Þ

�ww�
d is defined as:

�ww�
d ¼

�wwAd � KwAc1
wAd0 � KwAc1

ð20Þ

and the Fourier number for the dispersed phase is de-

fined as:

Fod ¼
4Ddt
d2d

: ð21Þ

3. Solution method

The flow Eqs. (7)–(9) and the convection–diffusion

equation (14) were solved numerically together with the

prescribed initial and boundary conditions by the finite-

element method. A CFD-Code SEPRAN [30] was used.

This programme makes use of the penalty method

[30,31]. The main advantages of this method over the

integrated method are that the system of equations to be

solved is appreciably reduced and that the problem with

zero pivots is avoided. Consequently, the computing

time and the memory space required for computation

are considerably reduced. By this method the continuity

equation is perturbed with a small term containing the

pressure as given by the following equation:

ep þr �~uu ¼ 0: ð22Þ
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The perturbation parameter e must be chosen such that
the product ep is of the order 10�6 [30,32]. The Navier–
Stokes equations (7) and (8) are discretized with the

standard Galerkin approach [33,34] and after the elim-

ination of the pressure from the Navier–Stokes equa-

tions, the following set of non-linear algebraic equations

are obtained:

M
o~uu
ot

þ S~uuþNð~uuÞ~uuþ 1
e
LTM�1

p L~uu ¼ F; ð23Þ

where ~uu represent the discretized velocity vector, S the
stress matrix which is a function of velocity for a gen-

eralized Newtonian fluid, Nð~uuÞ the discretization of the
convection terms, L the continuity matrix, LT the

transpose of the continuity matrix, M the mass matrix,

Mp the pressure matrix, p the unknown pressure,

s ¼ 1=e the penalty parameter, and F the vector con-
taining the boundary conditions. The pressure is ob-

tained as a derivative of the velocity through the

expression:

p ¼ �sM�1
p L~uu: ð24Þ

The solution of the concentration field is obtained by

using the velocity field obtained in Eq. (23). The time

dependent term of the equation is solved using the

Crank Nicolson method to improve the accuracy in

time. The upwind technique was also employed in the

solution of Eq. (23) to reduce the numerical oscillation

due to the dominant effect of convection [32]. The sim-

ulated area is discretized into many isoparametric tri-

angular elements with each element having six nodal

points. Fig. 2 shows an example of the finite-element

grid system used in computations. The linearization of

Eq. (23) is done through Newton’s iteration method.

This method converges quadratically, but a good initial

estimate is required, which is obtained by solving the

Stokes equations and next by iterating the equations

through Picard’s iteration method [32].

4. Discussion of results

4.1. Validity of the results

The accuracy of numerical simulation depends very

strongly on the number of nodal point used in the

computation. Table 1 presents the results of the simu-

lation for a stagnant drop for Fod¼ 0.1. The analytical
solution of the dimensionless mean concentration at

this Fourier number as given by the model from Newton

[8] and by Eq. (8) of the article from Henschke and

Pfennig [3] is 0.229526. Comparing the simulated results

with the analytical solution, it can be seen that as the

number of nodal points increases, the accuracy of the

simulation improves significantly. With a total nodal

point of 2677, the agreement of the results with the

analytical solution is very good. The actual computa-

tions were done with a total of 2304 isoparametric tri-

angular elements which corresponds to a total of 4721

nodal points. The solution of convection–diffusion

equation by large value of Reynolds numbers Rec ac-

tually required fine grid which means that one need a

small time step for numerical stability reasons [35]. The

results of the simulations in this work, with the grid

stated above, in the considered range of Reynolds

number (06Rec6 20), are very good.

4.2. Mass expansion coefficient

In this work, the numerical investigations were car-

ried out by using n-butyl-acetate–acetone–water, one of

the standard test systems recommended by Misek et al.

[36] for liquid–liquid extraction studies, as a case study.

The required transport properties of the system are

given in Table 2. The mass expansion coefficient used for

the simulation of the mass transfer by free and combined

convection was obtained through the relation:

Fig. 2. An example of finite element grid system inside and

outside the liquid drop.

Table 1

Effect of the number of nodal point on the accuracy of the

simulated mass transfer by Fod ¼ 0.1 and Rec¼ 0
Number of

nodal point

Average concentration

in drop

Percentage

error

317 0.234579 2.2015

1209 0.231364 0.8008

2677 0.230684 0.5045

4771 0.230552 0.4470

Table 2

Transport properties for n-butyl-acetate and water by a tem-

perature of 20 �C

Substance Viscosity g
10�3

(kg/m s)

Density q
(kg/m3)

Diffusion coefficient

D of acetone

10�9 (m2/s)

Water 1.003 998.2 1.093

n-Butyl-

acetate

0.7300 881.5 2.200
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bKi ¼ � 1
qi

Dqi

Dwi
; ð25Þ

where i represents the phase, qi the density of the pure

system and Dqi the change in density due to changes in

the mass fraction Dwi. By correlating the density with

the mass fraction up to 17%, the mass expansion coef-

ficient for the dispersed phase was obtained as bKd ¼
0:106 and for the continuous phase as bKc ¼ 0:136. The
drop diameter was kept constant at 2 mm throughout

the simulations. It should be noted that a n-butyl-acetate

drop with a diameter of 2 mm sedimenting in water at a

temperature of 20 �C, does so at a Reynolds number of
120. But the simulations in this work was carried out in

the flow regime 0 < Rec6 20. This was to give room for
the comparison of the effect of the combined free and

forced convection with the effect of forced convection on

the mass transfer, since the effect of combined free and

forced convection on the mass transfer is only limited to

this flow regime Rec6 20 [37].

4.3. Average concentration

The average concentration in the drop at the begin-

ning of the transport process is 10%. This reduces in

value with time due to the mass transfer from the drop

to the continuous phase.

Fig. 3 presents the changes in average concentration

with time for mass transfer by diffusion, free, forced, and

combined free and forced convection. Results show that

free convection enhances mass transfer over the pure

diffusion. Both for Rec¼ 5 and 20, the mass transfer by
forced convection is more than that by the combined

free and forced convection for a rising drop. This is

foremost surprising because the results is not in agree-

ment with the previous results for the continuous phase

mass transfer of a solid sphere. Pearson and Dickson

[22] and Hanel [38] show that the combined free and

forced convection of a falling solid sphere enhances mass

transfer while the combined free and forced convection

for a rising solid sphere suppresses mass transfer over

the transfer by forced convection only.

To explain the new results, the velocity profiles at the

equator plane both for forced, and combined free and

forced convection for a falling drop for Rec¼ 5 and
Fod¼ 0.0528 (24 s) are compared with each other in Fig.
4. The curves show that the velocity at the centre of the

drop (r� ¼ 0) for the combined free and forced convec-
tion is about two times that of the forced convection, but

the velocity at the interface for both cases are about the

same. The figure also indicates that the point of zero

velocity (centre of the internal vortex) for the combined

free and forced convection is 0.401R from the drop in-

terface, while it is 0.293R in the case of forced convec-

tion. The diffusive distance to be overcome by mass

transfer from the drop in the first case is thus higher than

that for the second case. That leads to the poor mass

transfer for the combined free and forced convection.

The effect of the direction of free convection on mass

transfer was also examined. The mean concentration for

Rec¼ 5 by mass transfer through the combined free and
forced convection for a falling and a rising drop was

plotted over time in Fig. 5. For comparison purposes,

the mean concentration for mass transfer by forced

convection is also presented. The figure contains addi-

tionally the theoretical maximum possible mass transfer

according to the model of Kronig and Brink [10]. The

diagram shows that the mass transfer by the combined

free and force convection for a rising drop impairs mass

transfer. The amount of mass transfer by the above

mentioned three cases is smaller than the theoretical

model from Kronig and Brink.

In Fig. 6, the average Sherwood number was plotted

over the Fourier number for the mass transfer by vari-

ous flow conditions considered in this work. Curve a in

the figure is valid for the Sherwood number for pure

Fig. 3. Average concentration of a n-butyl-acetate drop as a

function of time.

Fig. 4. Velocity profile along the equator plane inside a n-butyl-

acetate drop for Rec¼ 5 and Fod¼ 0.0528 (24 s).
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diffusion. The curve depicts the lower limit and curve b,

which corresponds to the model of Kronig and Brink,

depicts the upper limit. Other curves for mass transfer

by forced, and combined free and forced convection run

from the curve a by small Fourier number over the curve

b by high Fourier number. This trend, which is in

agreement with the model of Kronig and Brink, shows

that by corresponding high Fourier number, the circu-

lation in the drop is complete. The curves further show

that the superimposition of either free convection on

forced convection does not have appreciable effect on

the dispersed phase mass transfer. Furthermore, the

curves which is in agreement with the results of Brauer

[39] show that the average Sherwood number tends to

zero when the Fourier number tends towards infinity.

5. Conclusions

The mass transfer process was described in this work

by solving the complete Navier–Stokes and the convec-

tion–diffusion equations using the finite element method.

The Navier–Stokes equations were modified through the

Boussinesq-approximation to account for the effect of

changes in density with concentration. The mass transfer

was thus investigated for stagnant drop, free, forced and

combined convection. The results show that the super-

imposition of free convection on forced convection does

not enhances mass transfer but rather suppresses it. The

small rate of mass transfer by the combined free and

forced convection for a falling drop in comparison with

the mass transfer by forced convection can be due to the

effect of the continuous phase buoyancy force on

the drop. With the help of the numerical simulation,

the work has contributed to knowledge by answering an

important technical question on the effect of combined

convection on mass transfer.
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